Fluids & Electrolytes

Richard J. Kagan, M.D.

Professor of Surgery
University of Cincinnati College of Medicine

Body Water (as % body weight)

	Infant	Male	Female
Thin	80	65	55
Avg.	70	60	50
Obese	65	55	45

Functional Fluid Compartments

EXAMPLE: 70 Kg man, TBW = 42 L (60% x TBW)

	Body Wt	Compartment	Volume
	5%	Plasma	3500 ml
ECF	15%	ISF	10500 ml
ICF	40%	ICF	28000 ml

Blood Volume = 7-8 % Body wt

Hct =
$$\frac{RBC \text{ volume}}{RBC \text{ volume} + Plasma \text{ volume}}$$

Replacement of a 500 ml Plasma Volume Deficit

Solution	Amount
LR	2000 ml
FFP	500 ml
5% albumin	500 ml
25% albumin	100 ml

Osmolarity

Principal force of fluid movement

- Depends on # of active particles in solution that cannot pass through the semipermeable cell membrane
- Normal serum value = 285-300 mOsm/L
 - approximation: 2 (Na) + BUN/2.8 + Glucose/18
- Urine: 70-1200 mOsm/L
 - primarily controlled by ADH

Water Balance

Intake

Oral: 800 - 1500 ml as liquids

500 - 700 ml as solids

Water of oxidation: 200 - 400 ml/day

Water Balance

Output

Urine: 1000 - 2500 ml/day

⇒ need 500 - 800 ml to excrete products of catabolism

Water of stool: 100 - 200 ml/day

Insensible: 600 - 900 ml/day 25% = Respiratory (250 - 750 ml/day) 75% = Skin (400 - 600 ml/day)

Causes of Increased Insensible Water Losses

- Fever: < 250 ml per °F above normal
- Excessive evaporative skin losses (burns)
- Operation: 500 ml/hr
- Respirator or tracheostomy (up to 1.5 L/day)
- Hypermetabolism

Monitoring of Water Balance

 Urine output: 0.5-1.0 ml/kg/hr (30-50 ml/hr - adults)

- Daily weights
- Hematocrit, electrolytes, osmolarity
- CVP, PCWP, Cardiac Output

Baseline Fluid Requirements

CHILDREN: 1st 10 Kg → 100 ml/Kg/day

2nd 10 Kg → 50 ml/Kg/day

> 20 Kg → 20 ml/Kg/day

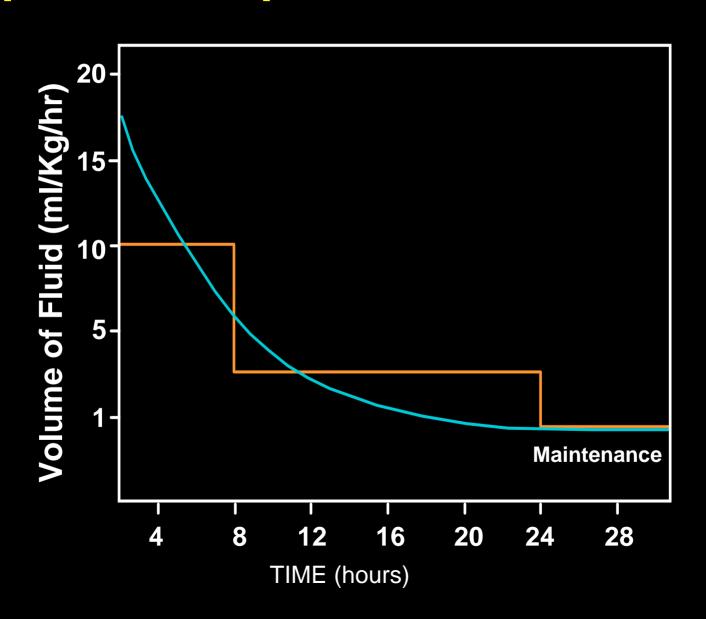
ADULTS: 30 - 35 ml/Kg/day

Baseline Electrolyte Requirements

CHILDREN: < 20 Kg:

- Sodium: 2-3 mEq/Kg/day
- Potassium: 1-2 mEq/Kg/day
- Chloride: 1-1.5 mEq/Kg/day

ADULTS:


- Sodium: 75 120 mEq/day
- Potassium: 65 90 mEq/day
- Chloride: 85 145 mEq/day

Other Body Fluid Losses

G.I. Tract: secretes 8-10 L/day

Source	Volume	Na	K	CI	HCO_3
Saliva	1500	10	25	15	30
Stomach	1500	60	10	130	
Duodenum	100-2000	140	5	80	
Pancreas	100-800	140	5	75	115
Bile	50-800	145	5	100	35
lleum	3000	140	5	104	30
Colon		60	30	40	

Graphic Concept of Fluid Resuscitation

Concept of 3rd Space

- > Fluid still within ECF (interstitial)
- Sequestered into areas of injury
- Must be replaced
- Losses are mobilized after recovery

Acute Dehydration

Most Common Fluid Disorder in Surgical Patients Diagnosis:

- 2% body wt: dry skin, thirst, 1 urine osmolarity, oliguria
- 4% body wt: dry tongue and axillae, oliguria, postural hypotension, tachycardia
- 6% body wt: LIFE THREATENING, above symptoms with lethargy, ileus

- Rapid infusion of balanced salt solution
- Avoid glucose-containing solutions

Chronic Dehydration

May tolerate losses up to 10% of body wt.

More even distribution between ECF & ICF

Less symptomatic than acute

Treatment: Slowly over a period of days

Hypotonic Dehydration (DESALTING WATER LOSS)

Most common fluid balance disorder

Etiology:

- Isotonic extrarenal losses
 - G.I. obstruction or fistula, ileus, vomiting, massive diarrhea, trauma
- Renal losses
 - osmotic diuresis, diuretic phase of ATN

Hypotonic Dehydration

Diagnosis: hypotension, tachycardia, atony, obtundation, hypothermia; low serum Na, urine Na <20 mEq/L

- Prevention:
 - replace GI losses Q 4-6hrs if massive
 - approximate electrolyte content of fluid lost
- Therapeutic:
 - RAPID replacement of water and electrolytes

Hypotonic Overhydration (Water intoxication)

Etiology:

- Overadministration of water
- Postop patients sensitive to hypotonic fluids
- Chronic visceral disease on low Na diet
- Chronic caloric starvation
 - increased endogenous water production
 - increased ADH
 - defect in Na pump due to energy deficit
- Inappropriate ADH syndrome
 - cancer, COPD, porphyria, head injury

Hypotonic Overhydration

Diagnosis: lethargy, stupor, coma, convulsions, weight gain, anasarca, pulmonary edema

Treatment:

Water intoxication: Decrease water intake
 ? Solute diuretic (mannitol)
 ?? 3% NaCl, 1/6 M Na Lactate

 Inappropriate ADH: Decrease water intake Lithium Declomycin

Hypertonic Dehydration (Desiccation)

Etiology:

- Evaporative water loss: respiratory tract fever, burn wound
- Loss of hypotonic fluids: excess sweating (50 mEq Na/L) diarrhea (in children)
- Renal abnormalities or abnormal renal stimuli (i.e., diabetes insipidus)
- Excess solute loading: hyperalimentation (NKHC, DKA) osmotic diuretics, angio. dyes
- Water deprivation

Hypertonic Dehydration

Diagnosis:

- Dry mucus membranes, thirst, oliguria, CNS changes
- Increased BUN, Na, osmolarity

- Water replacement
- Monitor body weight, osmolarity, renal function
- Watch for signs of cerebral edema

Parenteral Solutions

Solution	Na	K	Ca	Mg	CI	HCO ₃
ECF	142	4	5	3	103	27
LR	130	4	3	_	109	28
0.9% NaCl	154	-	-	-	154	
1/2 NS	77	-	-	-	77	
3% NaCl	513	-	_	-	513	

Hyperkalemia

Etiology:

- Renal insufficiency, stored blood
- Severe injury, cellular damage
- Metabolic acidosis (in exchange for H+)
- latrogenic

Symptoms: nausea, vomiting, diarrhea, colic weakness, depressed DTR's

Hyperkalemia

Diagnosis: peaked T waves; prolonged ST, QRS

Complications: arrhythmias, ventricular fibrillation

- Glucose-insulin-bicarbonate: 50 cc D₅₀
 10-25 units regular insulin
 1 amp NaHCO₃
- Calcium gluconate (10%): 50-100 cc
- Kayexalate: 5-10 gm po QID or 30 gm enema Q 3-6h
- Dialysis: when K+ > 7 mEq/L

Hypokalemia

Etiology:

- GI tract losses, alkalosis
- Renal excretion (diuretics)
- K into cells (insulin)
- Administration of K-free fluids
- Hyperaldosteronism
- Chronic hypercortisolism

Symptoms: nausea, vomiting, weakness

ileus, depressed DTR's

Hypokalemia

Diagnosis: flat T wave, prolonged QT, U wave

Complications: DIGITALIS TOXICITY

Treatment: potassium supplements (< 20 mEq/hr)

Hypercalcemia

Etiology:

- Hyperparathyroidism
- Bony metastases
- Tumors secreting pseudoparathormone

Symptoms: CNS (weakness)
GI (anorexia)

- 0.9% Saline, furosemide
- Mithramycin
- Chelating agents
- Steroids

Hypocalcemia

Etiology:

- Hypoparathyroidism
- Soft tissue infections
- Pancreatitis
- Renal failure

Symptoms: circumoral numbness, tingling hyperreflexia, tetany, cramps

Treatment: Calcium chloride or gluconate

Metabolic Acidosis

Etiology:

- Increased organic acid
 - diabetic ketoacidosis, lactic acidosis
 - cellular hypoxia (shock, airway obstruction, sepsis)
- Decreased renal excretion of acid
 - oliguric renal failure
 - hyperchloremia
 - obstructive uropathy
- Abnormal loss of bicarbonate
 - diarrhea
 - small bowel or pancreatic fistula

Metabolic Acidosis

Compensation:

- Hyperventilation, early
- Renal, late

- Correct underlying problem
- NaHCO₃
- Na lactate
- THAM (alkali w/o Na)

Metabolic Alkalosis

Etiology:

- Loss of HCI
 - -NG suction, vomiting
- Loss of KCI
 - -vomiting, diarrhea
 - -diuretics, steroids, aldosteronism

Metabolic Alkalosis

Compensation:

- generally uncompensated by lungs
- renal excretion of bicarbonate

- Chloride replacement
- Potassium replacement
- 0.1 N HCl or ammonium chloride

Respiratory Acidosis

Etiology:

- Hypoventilation
- A-V shunting

Compensation: renal

Treatment: mechanical ventilation

Respiratory Alkalosis

Etiology:

- pain

- fever

- sepsis

- early ARDS

Compensation: renal

- Pain management
- Ventilatory support (CPAP/PEEP)
- Search for possible underlying sepsis

Interpretation of Blood Gases

	рН	pCO ₂	HCO ₃
Metabolic alkalosis	†		†
Metabolic acidosis	↓		↓
Respiratory acidosis	↓	†	
Respiratory alkalosis	†	•	

Analysis of Acid-Base Balance

• pCO₂ \uparrow 10 mm Hg > 40 \Rightarrow pH decreases 0.08

• $HCO_3 \uparrow 10 \text{ mEq} > 25 \Rightarrow \text{pH increases } 0.15$

- Bicarbonate deficit (mEq):
 - > (25 HCO₃) x (0.2 x Body wt) or B.E. x (0.3 x Body wt)
 - ➤ Replace ≤ 50% at a time